A Versatile Macrocyclic [12]aneN₃ for Interconversion of Tetrahedral and Trigonal Bipyramidal Zinc(II) Complexes. Relevance to Four- Five-Coordinate Geometries of Zinc(II) in Carbonic Anhydrase

Eiichi KIMURA,* Tohru KOIKE, Mitsuhiko SHIONOYA, and Motoo SHIRO[†]
Department of Medicinal Chemistry, Hiroshima University School
of Medicine, Kasumi 1-2-3, Minami-ku, Hiroshima 734
[†] Rigaku Corporation, Matsubara-cho 3-9-12, Akishima, Tokyo 196

X-Ray crystal study of [12]aneN₃-Zn^{II}(NCS)₂ has revealed a 5-coordinate, trigonal bipyramidal structure with an equatorial Zn^{II}-NCS⁻ bond closer and linear, and an apical Zn^{II}-NCS⁻ bond longer and bent, and the new configuration of [12]aneN₃, which is reversed from those known for 4-coordinate, tetrahedral Zn^{II} complexes.

Carbonic anhydrases (CA) are a family of zinc enzymes that contain Zn^{II} -(imidazole)₃ complexes at the active centers, catalyzing the interconversion of carbon dioxide and bicarbonate via a possible five-coordinate intermediate.¹⁻³⁾ Thiocyanate anion, SCN⁻ is one of the typical CA inhibitors,⁴⁾ which is due to the strong binding to the Zn^{II} ion ($\log K = 2.8$ at 25 °C).⁵⁾ Recent X-ray crystal analysis (to 1.9 Å resolution) of the SCN-binding to CA at pH 8.5 showed the Zn^{II} ion in an ill-defined five-coordinate complex 1 with SCN-(extraordinarily short Zn–N bond distance 1.9 Å and almost linear Zn-NCS) and a water (Zn–O 2.2 Å) bound.⁶⁾ More detailed structural and chemical characterization of the five-coordinate Zn^{II} complexes would be essential in defining the intrinsic properties of the Zn^{II} ion in the enzymes.

SCN⁻ Inhibition mechanism of *Carbonic Anhydrase*

Recently, we have discovered that a tetrahedral Zn^{II} -OH₂ triamine complex **2** with a 12-membered macrocyclic triamine 1,5,9-triazacyclododecane ([12]aneN₃) is a good model for the active center of CA kinetically (in acetaldehyde hydration and carboxylic ester hydrolyses) as well as thermodynamically (in anion bindings with **2** (e.g. $X = OH^-$, halogen ions, carboxylates, phosphates, etc.)).⁷⁻⁹ Of particular interest was the similarly strong affinity of **2** to SCN⁻ ion into **3** (log K = 2.4 at 25 °C and I = 0.20).⁷⁾

We now have isolated Zn^{II}[12]aneN₃(NCS)₂ **4** as colourless powder by mixing [12]aneN₃ (390 mg, 2.3 mmol) and Zn(NCS)₂ (450 mg; > 90% purity, Kanto Chemical Co.) in 30 cm³ of 98% EtOH at 50 °C in 72% yield (580 mg). The product was recrystallized from aqueous 50% MeOH to give colorless crystals of **4** for X-ray analysis.¹⁰ X-Ray analysis of **4** has shown a *five-coordinate structure* (Fig. 1) with two bound SCN-ions.¹¹ The Zn^{II} ion is 0.095 Å above the N(1), N(5), N(16) trigonal plane to an apical SCN-ion. Two novel features with **4** have been found.

One is the unequivalent two Zn^{II}–NCS⁻ bonds in a trigonal bipyramidal structure, despite **4** resulting from the SCN⁻ replacement reaction at the symmetrical **2**: the equatorial Zn-NCS⁻ bond length is very short (Zn-N(16) 2.012(3) Å) and the Zn-N-C angle is more linear (Zn-N(16)-C(17) 171.3(3)°), and the apical Zn–NCS⁻ bond length is longer (Zn–N(13) 2.119(3) Å) and the Zn-N(13)-C(14) angle is bent at 152.2(3)°. ¹²⁾ This fact implies that the five-coordinate, trigonal bipyramidal structure is one of the *intrinsic properties* of Zn^{II} ion, where a strong σ donating ligand such as SCN⁻ comes at an equatorial position. The infrared CN stretching frequencies ν CN of 2107 and 2062 cm⁻¹ are assigned to the equatorial shorter N=C length of 1.143(4) Å and the apical N=C length of 1.152(5) Å, respectively. The equatorial NCS⁻ ion forms three intermolecular hydrogen bondings S(18)... HN with three adjacent Zn^{II}[12]aneN₃ complexes.

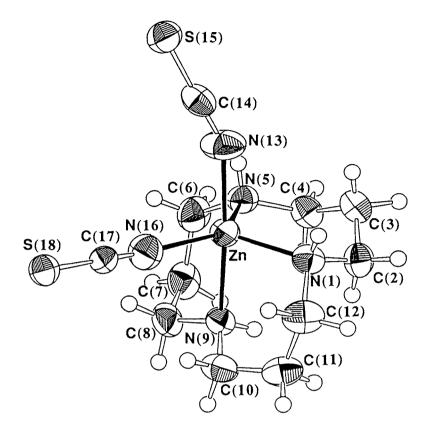


Fig. 1. ORTEP drawing (50% probability) of 4.

The second remarkable feature is a hitherto unreported configuration (the NH hydrogens are [down, up, up]) of the Zn-bound ligand [12]aneN₃, which is inversed at one NH (to accommodate a SCN-) from the one (the NH hydrogens are all [up]) in symmetrical tetrahedral complexes (e.g. [12]aneN₃-Zn^{II}-OH-,⁷) see 2, and [12]aneN₃-Zn^{II}-Br- ¹³). A CPK molecular model indicates the [down, up, up] configuration is favorable only for five-coordinate, trigonal pyramidal geometry. The strong binding of the first incoming NCS- ion would break the [up, up, up] configuration set for the tetrahedral geometry. The barrier for the configurational interconversion would not be so high as to hinder the four- \rightleftharpoons five-coordinate transformation in solution, but would be high enough to allow the occurrence of 4 in a solid state. 4 exhibited only three ¹³C NMR signals assigned to two kinds of CH₂ and one SCN- ion, and symmetrical ¹H NMR signals in MeOH at 27 °C, ¹⁰) indicating the fast equilibrium for $4 \rightleftharpoons 3$ (or the H₂O-less, four-coordinated complex). In D₂O solution of 4 the CN stretching absorption occurs broadly only at 2063 cm-¹.

In the CA catalysis, a similar fast interconversion between OH^- and HCO_3^- bindings to the Zn^{II} ion through a five-coordinate intermediate has been proposed in the catalytic cycle.²⁾ The 12-membered macrocyclic triamine complex is thus well illustrating the four- \rightleftharpoons five-coordinate transformation of Zn^{II} in the enzyme.

References

- 1) S. Lindoskog, "Zinc Enzymes," Brikäuser, Boston, MA (1986), Chap. 22, p. 307; E. A. Eriksson, T. A. Jones, and A. Liljas, *ibid.*, Chap. 23, p. 317; Y. Pocker, N. Janjic, and C. H. Miao, *ibid.*, Chap. 25, p. 341.
- a) K. K. Kannan, M. Petef, K. Fridborg, H. Cid-Dersdener, and S. Lövgren, Febs Letter, 73, 115 (1977).
 b) J. Liang and W. N. Lipscomb, Biochemistry, 26, 5293 (1987).
 c) K. M. Merz, Jr., R. Hoffmann, and M. J. S. Dewar, J. Am. Chem. Soc., 111, 5636 (1989).
- 3) A. E. Eriksson, T. A. Jones, and A. Liljas, *Proteins*, 1988, 274.
- 4) D. N. Silverman and S. Lindskog, Acc. Chem. Res., 21, 30 (1988).
- 5) Y. Pocker and T. L. Deits, J. Am. Chem. Soc., 104, 2424 (1982).
- 6) A. E. Eriksson, P. M. Kylsten, T. A. Jones, and A. Liljas, *Proteins*, 1988, 283.
- 7) E. Kimura, T. Shiota, T. Koike, M. Shiro, and M. Kodama, J. Am. Chem. Soc., 112, 5805 (1990).
- 8) E. Kimura and T. Koike, Comments Inorg. Chem., 11, 285 (1991).
- 9) T. Koike and E. Kimura, J. Am. Chem. Soc., 113, 8935 (1991).
- 10) IR (KBr pellet): 3495, 3254, 3235, 2930, 2919, 2107 (SCN⁻), 2062 (SCN⁻), 1456, 1426, 1381, 1368, 1264, 1115, 1098, 1017, 972, 890 cm⁻¹. ¹H NMR (CD₃OD; TMS reference, at 27 °C): δ 1.63 (3 H, ttd, J = 2, 9, 16 Hz, CCHC), 2.87 (6 H, ddd, J = 2, 9, 13 Hz, CCHC), 3.19 (6 H, ddd, J = 2, 9, 13 Hz, CCHC). ¹³C NMR (CD₃OD; TMS reference, at 27 °C): δ 26.8, 51.6, 135.8; (D₂O; DSS reference, at 27 °C): δ 27.9, 53.1, 136.6. Anal. Found: C, 37.31; H, 5.96; N, 19.83%. Calcd for C₁₁H₂₁N₅S₂Zn: C, 37.44; H, 6.00; N, 19.85%.
- 11) Crystal data: $C_{11}H_{21}N_{5}S_{2}Zn$, M = 352.82, monoclinic, space group $P2_{1}/c$, a = 8.400(5), b = 13.157(5), c = 14.713(4) Å, $\beta = 91.62(3)^{\circ}$, V = 1625(1) Å³, Z = 4, $D_{c} = 1.442$ g cm⁻³, crystal size $0.3 \times 0.3 \times 0.3$ mm³, μ (Cu K α) = 44.50 cm⁻¹, 2554 data collected at 296 K on Rigaku AFC-5R diffractometer. The data were collected for Lorentz-polarization, extinction and absorption. The structure was solved by the heavy atom method and refined anisotropically by using a total of 2069 reflections ($I > 3\sigma(I)$) to give R = 0.031 and $R_W = 0.049$. The program used was TEXSAN-TEXRAY structure analysis package (Moleqular Structure Corporation, 1985). Selective bond distances (Å), intermolecular hydrogen bond distances (Å) and bond angles (°): Zn-N(1) 2.033(3), Zn-N(5) 2.050(3), Zn-N(9) 2.203(3), Zn-N(13) 2.119(3), Zn-N(16) 2.012(3), N(13)-C(14) 1.152(5), C(14)-S(15) 1.621(4), N(16)-C(17) 1.143(4), C(17)-S(18) 1.624(3); S(18) ··· N(1) [-x, -y, -z] 3.501(3), S(18) ··· N(5) [x-1, y, z] 3.523(3), S(18) ··· N(9) [-x, \frac{I}{2} + y, \frac{I}{2} z] 3.580(3); N(1)-Zn-N(5) 106.8(1), N(1)-Zn-(16) 119.6(1), N(5)-Zn-N(16) 132.9(1), N(1)-Zn-N(9) 86.5(1), N(1)-Zn-N(13) 98.6(1), N(5)-Zn-N(16) 89.8(1).
- 12) In Ref. 7, the pH-metric determination of the SCN⁻ affinity to **2** in 100% aqueous solution demonstrated that only one SCN⁻ ion binds to the Zn^{II} ion in **3** at 25 °C and [SCN⁻] ≤ 0.20 mol dm⁻³. Thus, the apical SCN⁻ in **4** would be labile and dissociate.
- 13) P. M. Schaber, J. C. Fettinger, M. R. Churchill, D. Nalewajek, and K. Fries, *Inorg. Chem.*, 27, 1641 (1988).

(Received February 12, 1992)